跳至主要内容

对网关的理解

网络模型被OSI分成七层,TCP/IP协议大致对应了2、3、4、7层,分别是数据链路层、网络层、传输层、应用层,IP协议处于网络层上,它的工作原理说白了并不复杂:
  1. 整个互联网上所有的机器都有唯一一个IP地址对应。这并没有什么稀奇的,MAC地址也是唯一的,稀奇的在后面
  2. 机器的IP地址按照连接顺序进行了一定程度的分组,这样一个连续的IP段大致都在相同的路线上,这样路由器寻找特定IP地址的时候就方便多了,把整个地址空间分成若干个可能重叠的大段,每个大段一般这样表示:A.B.C.D/n,表示32位IP地址的前n位与A.B.C.D的前n位相同。比如192.168.1.0/24,所有前24位与192.168.1.0相同的都是这个网段的IP,由于IP地址8位一分组,24位就是前三段,也就是192.168.1.x。符合规范的这段连续的IP段就叫做一个子网。这种子网的表示方法叫做CIDR。
  3. 这种表示方法对人来说比较直观,但是计算机有另一种更快速的计算方法,对于A.B.C.D/n,我们构造一个前n位都是1、后面其他位都是0的IP地址,这个32位IP地址和A.B.C.D按位与的结果,就是前n位与A.B.C.D相同而后面其他位都是0的IP地址;如果这个32位IP地址和另一个IP地址与的结果,刚好与A.B.C.D与的结果相等,就说明这个IP地址和A.B.C.D的前n位相等,就说明新IP地址在CIDR范围内。我们把前n位都是1、后面其他位是0的地址也用IP地址的形式表示出来,那么192.168.1.0/24对应的就是255.255.255.0,这个就叫做子网掩码,掩码也就是mask,mask在计算机用语当中表示按位与的操作数,用来从目标数中取出特定的二进制位。也就是说IP+子网掩码是CIDR的另一种表示形式。

对于任意一台计算机或者路由器来说,它首先会有一些本地的链路,这些链路的IP地址都在各自特定的CIDR当中,这个子网叫做链路子网,链路子网中的IP地址都可以通过链路层协议直接访问,具体的访问方法与IP协议无关,在以太网当中是靠ARP,但是如果是WLAN,或者令牌环网,或者PPPoE,又会有所不同。比如子网是192.168.1.0/24,那么范围内所有IP地址都会直接调用链路层协议访问。表现在路由表中,就是这样一项:
192.168.1.0/24 -> link local, ifindex = XXX
即“192.168.1.0/24范围的IP通过XXX网卡的链路层协议直接访问”
如果还有其他链路,也会有相应的表项,比如说还有一个网卡上面的链路子网是111.222.1.0/24,那么就有另一项:
111.222.1.0/24 -> link local, ifindex = YYY
特别的,每个网卡上都会有一个IP地址,是本机的IP地址。当数据包发到这个IP地址的时候,设备就会正确理解“这个数据包是发给我自己的”,否则会理解为“这个数据包需要我代为转发”。这些本机的IP地址一定在链路层子网当中,比如说192.168.1.0/24中本机的IP地址是192.168.1.1,111.222.1.0/24中的IP地址是111.222.1.15,那么就有两个表项:
192.168.1.1/32 -> local
111.222.1.15/32 -> local
到local表示交给本机的更高层的协议栈,比如TCP/UDP去处理。否则会转发到其他机器。
我们注意到这些表项和刚才的表项有重叠的部分,比如说192.168.1.1/32其实包含在192.168.1.0/24里面。路由表的不同表项有不同的优先级,子网越小的越优先,也就是后面n越大的越优先,这样192.168.1.1/32就比192.168.1.0/24优先。

除了这些IP地址以外,其他的IP地址显然是无法直接访问的,需要由其他设备进行转发。不同网段的IP地址可能需要不同的设备进行转发。我们必须在路由表当中记住某段IP具体由哪个设备转发,记录的方法是记住需要转发的IP段CIDR,和需要发往的设备的IP地址,像这样:
100.101.1.0/24 -> via 192.168.1.17
这个via后面的地址,192.168.1.17,这个设备有进一步将数据包转发到目的网段的能力,比如说上面有一个链路层子网就是100.101.1.0/24,或者有另一条路由信息表明这个网段应该进一步发给其他的某个设备。这个设备在IP协议当中就叫做Gateway(网关),因为所有发到目的网段的流量都会从这个设备上经过,这个设备像个门一样,把两个网段连接了起来。
大多数情况下,这个IP地址位于某个链路层子网中,这样本机可以直接通过链路层协议将IP报文发送到网关。一部分设备(主要是硬件路由器)支持递归的路由表配置,这个时候网关地址可以不是本地链路层子网中的地址,当需要将IP报文发送到这个网关时,设备会递归查找网关的路由信息,直到查找到可以直接发送的地址为止。

互联网上的网段太多了,而且天天都在变,我们不可能给每个设备都配上互联网上所有的网段。幸好,对于大部分设备来说,除了特定的少数几个网段以外,大部分IP地址都有相同的网关,于是我们可以通过配置一个包含整个IP空间的CIDR来指定大部分IP地址的共同的网关:
0.0.0.0/0 -> via 111.222.1.254
由于前面说的原则,子网越小越优先,这条规则的优先度最低,而且能匹配所有的IP地址,因此可以理解为无法匹配到其他子网网段时使用的默认规则,因此这个网关一般叫做默认网关。
一个设备可能有多个网关,但是一般最多只有一个默认网关(不考虑等价路由、策略路由等复杂的情况)。也有可能没有默认网关,比如说骨干网上的路由器通过BGP协议交换路由信息,一般路由表就由非常多的CIDR组成,这些CIDR合起来能覆盖互联网上所有的公网IP。

最后说下链路层地址与IP地址。许多链路层协议也有自己的地址,一般是MAC地址,比如最常用的以太网。链路层地址在链路层协议中使用,表明这个链路层报文会被发给谁;而IP地址在IP层协议中使用,表明这个报文最终要发给谁。可以分为两种情况:
1. 直接通过链路层发送:
链路层地址: (源MAC地址) (目的MAC地址)
IP地址: (源IP地址) (目的IP地址)
2. 经过网关转发
从本机出发发往网关时,链路层的目的是网关而IP层的目的不是网关:
链路层地址: (本机源MAC地址) (网关MAC地址)
IP地址: (本机IP地址) (目的IP地址)
网关转发到其他网关:
链路层地址: (网关MAC地址) (下一跳网关MAC地址)
IP地址: (本机IP地址) (目的IP地址)
最后一个网关转发到目标:
链路层地址: (最后一个网关MAC地址) (目的MAC地址)
IP地址: (本机IP地址) (目的IP地址)
在转发过程中,IP报文的源和目的保持不变,链路层地址则只和这一跳的双方有关,甚至如果中间经过了不一样的链路层,还会更换二层数据包的格式。

Popular posts from 产品随想的博客

申请日本研究生---转载

原文地址: 申请日本研究生 首先有必须向大家解释一下日语中这个“研究生”的概念以及日本的大学院的基本设置。  日语中“研究生”用英文来说是research student,在日本的大学是非正规生,也就是说没有学位也不可以修得学分,一般情况下只能在研究生阶段结束以后得到一份“研究生修了证明书”,这个回国是没有用处的。  最初研究生的设立,并不是为了大学院备考者。但是现在外国留学生都利用这个课程来作为进入大学院正规课程的一个途径。说直接一点,就是为了拿到签证,来日本考大学院的一个途径。  研究生又分为两种,一为学部研究生,申请的资格为大学本科毕业及其预定毕业者,或者是满16年学习经历的都有资格申请。第二种为大学院研究生一般是硕士毕业以及其预定毕业者有资格申请。  简单的说,可以把中日的高中到博士的就学阶段和名称对比如下:  日本:高校 学部 学部研究生 修士 大学院研究生 博士  中国:高中 本科 硕士预科 硕士 博士预科 博士  |--------- | ----------|  |  统称大学院  研究生的申请基本上为书类选考,也就是只要提交必要的材料和得到指教教官的许可就可以申请。也有个别好的大学需要书面考试,但为数不多。  研究生的申请可以是国内出愿(人在日本),也可以是海外出愿(人在中国)。  日本大学院的基本设置。  一般是##大学大学院###研究科的机构下,分博士前期(相当于国内的硕士)和博士后期(博士),有些大学的有些专业没有博士后期,一般就叫做修士课程。  研究生下又有具体专攻的划分。  申请研究生第一步  是和你想去大学的导师联系,希望他能够当你的指导教官(当然事先搜集有关大学,导师的资料是必备的,要确定这个大学一定招研究生.相关信息。  可以利用小春留学论坛学校版提供的以下信息搜索引擎  也可以利用日文门户网站yahoo等来搜索。)  联系导师的合理时间,一般在你希望入学时间(一般一年有两次,4月和10月,)的6-12个月前.具体时间各个学校,各个专业不同不同。  至少6个月前是一定要联系拉,否则会来不及.  国内本科大4在校生,建议在进入大4后就着手准备联系导师事项.  联系导师的方法,材料及注意事项  1。可以通过电子邮件,书信,传真,电话各种工具。最方便,最便宜的方式推荐用电子邮件。有些导师是不公开电子邮件的,那就只能利用其他工具拉。 

乔布斯自己的话

我對建立一家屹立不搖的公司有著不滅的熱情。我希望激發公司裡的人做出偉大的產品,其他都是其次的。能獲利當然很好,因為這樣你才有更多的本錢去做很棒的產品。然而,最重要的动机還是產品,而不是獲利。史考利就是把優先順序搞錯了, 把赚钱當成首要目標。雖然製造產品和追求獲利只有些微的不同,但這目標的確關係到一切,包括你要雇用什麼樣的人,晉升哪些人,在開會的時候要討論什麼。 有些人會說:「給消費者想要的東西。」但這不是我的做法。我們必須在消費者知道自已想要什麼東西之前,就幫他們想好了。記得福特曾說:「如果我問顧客他們要什麼,他們必然會回答我:跑得更快的馬!」除非你拿出東西給顾客看,不然他們不知道自己要什麼。這就是為什麼我從不仰賴市場調查。我們的任務是預知,就像看一本書,儘管書頁上還是一片空白,我們已可讀出上面寫的東西。 寶麗來的蘭德曾提到人文與科學的交會。我喜歡這樣的交會,這就是最神奇的地方。目前創新的人很多,我的職涯最突出的並非創新。蘋果能打動很多人的心,是因為我們的創新還有很深的人文淵源。我認為,偉大的工程師和偉大的藝術家很類似。他們都有表達自己的深切欲望。其實,為第一代麥金塔打拚的精英當中,有些也會寫詩或作曲。在1970 年代,人們用電腦表達他們的創造力。像達文西和米開朗基羅這樣偉大的藝術家,本身也是科學家。米開朗基羅不只是會雕刻,也知道如何開採石材。 蘋果能做的,就是幫消費者整合。因為一般人都很忙,一星期七天,一天二十四小時,完全抽不出時間想這些。如果你對製造偉大的產品充滿热情,你就會想整合,把你的硬體、軟體和內容變成一個整體。如果你想開關新的疆土,你得自己來。如果你要使你的產品開放,和其他軟、硬體相容,就不得不放棄你的一些遠見或夢想。 過去的矽谷,在不同的時間點都曾出現過獨領風騷的大公司。最早是惠普,他們曾稱霸一段很長的時問,接著進入半導體時代,快捷和英特爾是其中的佼佼者。之後蘋果也曾光芒耀眼,然後又黯淡下來。到了今天,我想最强的就是蘋果,而 Google 緊跟在後。我認為蘋果禁得起時間考騐。蘋果這幾年的表現非常亮眼,日後仍會是電腦科技的先鋒。 向微軟丢石頭很簡單。微軟顯然不再像過去那樣意興風發,不再舉足輕重,但我還是認為他們過去的成就很了不起,那真是不容易。他們是經營獲利的高手,對產品發展則沒那麼有野心。蓋兹自認為是產品的推手,懂產品的人。其實,他不是,他是個生意人。

Good for the Soul, Steven Levy, 2006, Newsweek

Interview During the iPod's development process did you get a sense of how big it would become? The way you can tell that you're onto something interesting is if everybody who knows about the project wants one themselves, if they can't wait to go out and open up their own wallets to buy one. That was clearly the case with the iPod. Everybody on the team wanted one. Other companies had already tried to make a hard disk drive music player. Why did Apple get it right? We had the hardware expertise, the industrial design expertise and the software expertise, including iTunes. One of the biggest insights we have was that we decided not to try to manage your music library on the iPod, but to manage it in iTunes. Other companies tried to do everything on the device itself and made it so complicated that it was useless. What was the design lesson of the iPod? Look at the design of a lot of consumer products—they're really complicated surfaces. We tried mak

产品随想 | 周刊 第122期:务必要疯狂地怀抱雄心,且还要疯狂地真诚

你可能是个大器晚成的人——那些早年失败却在晚年成功的人具备的特质。   https://mp.weixin.qq.com/s/6gBPM5u1y2QNJsdnfd_O1Q 好喜欢这句话:人的一生可以在很多方面帮助你,但有两样东西是别人无法给予你的:好奇心和动力。这两样东西必须由自己来提供。 The House of Arnault,His company, LVMH, bought up many of the world’s major luxury brands. And he’s not finished shopping.   https://www.bloomberg.com/features/2024-lvmh-bernard-arnault/ 介绍奢侈品巨头 大模型的扑克牌:独家内幕故事   https://mp.weixin.qq.com/s/YfFN7yjbyyPIy3MC89HdXA Club Deal. Vinod Khosla, Marc Andreessen And The Billionaire Battle For AI's Future   https://www.forbes.com/sites/alexkonrad/2024/06/04/inside-silicon-valley-influence-battle-for-ai-future/ AI计算机的样子,会是怎么样? Tinokwan Lighting Consultants   https://www.instagram.com/tinokwanlighting/ 估计也是世界顶级的灯光设计公司 “He saw beauty in both art and engineering,” Jobs said, “and his ability to combine them was what made him a genius.” 乔布斯评价达芬奇 中华珍宝馆   https://g2.ltfc.net/home 文化传承还是得靠民间这些喜爱之人 Morphic   https://github.com/miurla/morphic An AI-powered search engine with a generative UI 试用了下,体验非常不错 「务必要疯狂地

内网域名访问内网服务器

部门ftp服务器和远程服务器内网域名无法访问问题困扰我好久,钻研了几天,终于明白了一些,和大家做一个分享, 原帖子在这里 ,表示感谢

产品随想 | 周刊 第51期:Never let a good crisis go to waste

Products Paperless-ngx   https://github.com/paperless-ngx/paperless-ngx A community-supported supercharged version of paperless: scan, index and archive all your physical documents 自架设服务,文档聚合 Tube Archivist on YouTube   https://github.com/tubearchivist/tubearchivist Your self hosted YouTube media server 自托管YouTube流媒体播放 Emby Server Emby Server is a personal media server with apps on just about every device. 自己掌控流媒体 Pointless   https://github.com/kkoomen/pointless An endless drawing canvas desktop app made with Tauri (Rust) and React 无限画布白板工具,Tauri构建,跨多端 PWA LIST   https://www.pwalist.app/ 一些好玩的PWA应用,有些还不错 Pomofocus 番茄钟 Song Search “Find me a song by lyrics.”   https://songsear.ch/ Nanopi Openwrt   https://github.com/klever1988/nanopi-openwrt Openwrt for Nanopi R1S R2S R4S R5S 香橙派 R1 Plus 固件编译 纯净版与大杂烩 Project ImmortalWrt   https://github.com/immortalwrt/immortalwrt An opensource OpenWrt variant for mainland China users. China用户专用......心情复杂 YAOF   https://github.com/QiuSimons/YAOF Yet Ano

产品随想 | 周刊 第56期:西方出版商应该拒绝思想审查

Products IKEA's latest AR app can erase your furniture to showcase its own   https://www.engadget.com/ikea-ar-app-lets-you-preview-its-furniture-in-your-own-house-130004284.html LiDAR的实际应用 JustLive-Android   https://github.com/guyijie1211/JustLive-Android 一个集成国内多个直播平台内容的App,非常好用 2022口腔护理评测合集,护齿攻略不容错过   https://mp.weixin.qq.com/s/ktyG9K_dwbcha4F0qm3Elw 有调出品 NAS媒体库资源归集整理工具 NAS Tools   https://github.com/jxxghp/nas-tools NAS媒体库资源归集、整理自动化工具 Citizenship Consciousness & Privacy British publishers censor books for western readers to appease China   https://www.ft.com/content/63cbf209-656f-4f99-9ee3-722755c228ed?shareType=nongift 西方出版商应该拒绝这样的思想审查 Boris Nemtsov Tailed by FSB Squad Prior to 2015 Murder   https://www.bellingcat.com/news/2022/03/28/boris-nemtsov-tailed-by-fsb-squad-prior-to-2015-murder/ 克格勃特工 Design My NYC Apartment Tour: $1,875/Month in Manhattan   https://www.youtube.com/watch?v=2ABFuMGkp9k 曼哈顿1800刀月租的房子,还是很棒的呀 The Hardest Trip - Mandelbrot Fractal Zoom   https://www.you

Class 3

一. shell脚本 基本语法  #!/bin/bash    声明解释该脚本的程序,使用后可使用bash内建的指令 #!被称为魔数    魔数后应指定运行该脚本所需程序的完整路径 特点 shell脚本解释器

产品随想 | 陪读《爱因斯坦传》:11-18章

  第十一章 爱因斯坦的宇宙,1916—1919 施瓦茨希尔德先是计算了一个非旋转的球形恒星外部的时空曲率。几周以后,他又寄给爱因斯坦一篇论文,讨论了这样一颗恒星内部的时空曲率是什么样子。 无论是哪种情况,似乎都可能有某种不同寻常的事情发生,事实上是必然会发生。如果一颗恒星(或任何物体)的所有质量都被压缩到一个足够小的空间(即后来所谓的施瓦茨希尔德半径〉中,那么所有计算似乎都失效了。时空将无限地自行弯曲下去。对我们的太阳而言,如果它的所有质量都被压缩到不足两英里的半径内,这种情况就会发生。而地球则需要压缩到大约1/3 英寸。 这就意味着,在这种情况下,施瓦茨希尔德半径之内没有任何东西能够逃脱引力的牵引,甚至连光或其他形式的辐射也不行。时间也将延缓到停滞。换句话说,在外面的观察者看来,施瓦茨希尔德半径附近的旅行者似乎被冻结了,从而驻足不前。 ──后来的黑洞 在整个宇宙中,现已发现许多黑洞。我们银河系中心就有一个,质量比太阳大几百万倍。“黑洞并不稀少,它们并不是我们宇宙的一种偶然点缀,”戴森说,“只有在这里,爱因斯坦的广义相对论才能大显身手,光芒四射。也仅仅在这里,空间和时间才丧失了自己的特性,共同融入一种由爱因斯坦的方程精确描绘的卷曲的四维结构。” 现在想象这样一种情形:如果这些平直居民的二维仍然在一个表面上,但这一表面(以一种在他们看来相当微妙的方式〉发生了轻微弯曲,或者说,如果他们仍然局限于二维,但其平直表面就像是--个球面,情况会怎样?正如爱因斯坦所说:“现在让我们考患一种二维存在,但这次是在球面上而不是在平面上。”这些平直居民射出的箭看上去仍然沿直线运动,但最终却会折返,就像沿地球表面航行的水手最终会从反方向归来一样。 平直居民所处的二维空间的弯曲使其表面是有限的,但却没有任何边界。无论他们沿着什么方向旅行,都不会到达宇宙的尽头或边缘,但最终会回到同一位置。正如爱因斯坦所说:“这种思考的迷人之处在于认识到:这些生物的宇宙是有限的,但却没有边界。〞如果这些平直居民的表面类似于一个膨胀的气球,那么他们的整个宇宙将会不断膨胀,但仍然没有边界。 在这样一个弯曲的宇宙中,沿任何方向发出的光将沿肴表面上的一条直线运动,但仍然会折回自身。“构想这样一种有限无界的空间,是迄今为止关于宇宙本性的最伟大的思想之一,”物理学家玻恩这样说。 的确如此,但这个弯曲的宇宙之外是什么呢?曲

有关DNS

Windows下DNS命令 查看本机DNS缓存:ipconfig /displaydns 清除本机DNS缓存:ipconfig /flushdns 查看本机DNS地址:nslookup 查看本机网络设置:ipconfig /all